
November 2013 FoxRockX Page 1

VFP: Ideal for Tools, Part 3
The VFP language supports programmatic manipulation of programs and projects,
providing more options for creating developer tools.

Tamar E. Granor, Ph.D.

The first two parts of this series looked at Visual
FoxPro language elements for exploring data, and
for working with classes and forms. This article
looks at parts of VFP that let you work with pro-
grams and projects.
As with the other articles, most of the examples
here are drawn from code that comes with VFP or
is included in VFPX.

Working with code
Many developer tools need to work with code,
whether displaying it for editing, or analyzing it
in some way. VFP provides some functions that
simplify the task. (It’s also worth noting that VFP
has a nice collection of functions for examining
and manipulating text, such as SUBSTR(), AT(),
STUFF(), and so forth. They’re beyond the scope
of this article. See Steven Black’s excellent paper
on working with text in VFP at http://stevenblack.
com/articles/text-and-string-handling-in-VFP/.)

What’s in there?
Even though lots of code lives in forms and visual
classes, chances are that your application still
includes at least a few PRGs. In addition to the
main program for a project, you likely have some
standard functions stored in program files, and
you may also have non-visual classes (such as the
application class or various processing classes). In
a couple of projects that I’m maintaining, there are
procedure files, as well.

A number of the tools that come with VFP use
PRGs. For example, the heart of the Toolbox is the
ToolboxEngine class stored in ToolboxEngine.PRG.

VFP provides some tools for digging into
programmatic code. The most important is the
AProcInfo() function, which takes a filename and
creates an array of information about the file con-
tents. Listing 1 shows the syntax. When you omit
the third parameter (or pass 0), the array contains
an entry for each item in the file: procedures/func-
tions, classes, methods and compiler directives.
You can pass 1, 2 or 3 to restrict the listing to class-
es, methods, or compiler directives respectively.
Unfortunately, there’s no way to get information
about just procedures and functions.

Listing 1. The AProcInfo() function puts information about the
contents of a program file into an array.
nCount = AProcInfo(aResult, cFileName
 [, nItemType])

The resulting array contains the name of each
item and the line number where it’s found in the
file. Depending on the value of nItemType, there
may be additional columns. Table 1 shows the pos-
sibilities.

Table 1. The columns in the array created by AProcInfo() vary
based on the value passed for nItemType.

Column Contents Applies for
nItemType

1 Name of item. For
methods, the name
includes the class
name. For classes
when nItemType=0,
includes the "AS"
portion of the definition
listing the parent class.

0,2,3

Class name. 1
2 Line number in the file

where the item occurs.
All

3 Item type: Define,
Directive, Class,
Procedure. All
procedures, functions,
methods and events
are classified as
"Procedure."

0,3

Parent class name. 1
4 Indentation, but always

0.
0

If the class is
defined OLEPublic,
"OLEPUBLIC".
Otherwise, empty.

1

Several of the tools that come with VFP use
AProcInfo(). For example, the Code References tool
uses it in a method that determines in what method
of a visual class a particular line number occurs.
The code for that method, called GetProcedure, is
shown in Listing 2.

Page 2 FoxRockX November 2013

After using AProcInfo() to find the starting
position of each item in the file, the code loops
through the array and compares the start position
of the item to the line it’s looking for. As the loop
proceeds, each Procedure type line (which includes
procedures, functions and methods) is parsed and
the name of the method saved. Then, when the loop
reaches an item that’s beyond the line it’s looking
for, the saved procedure name is returned.

Listing 2. This method uses AProcInfo() to find out what proce-
dure or method in a file contains a specified line.
FUNCTION GetProcedure(nLineNo)
 LOCAL cTempFilename
 LOCAL cSafety
 LOCAL nCnt
 LOCAL i
 LOCAL cProcName
 LOCAL ARRAY aFileInfo[1]

 IF m.nLineNo == 0 OR EMPTY(THIS.cFileText)
 RETURN ''
 ENDIF

 m.cProcName = ''
 m.cTempFilename = ADDBS(SYS(2023)) + ;
 SYS(2015) + ".tmp"

 TRY
 STRTOFILE(THIS.cFileText, ;
 m.cTempFilename, 0)
 m.nCnt = APROCINFO(aFileInfo, ;
 m.cTempFilename, 0)

 CATCH
 m.nCnt = 0
 ENDTRY
 FOR m.i = 1 TO nCnt
 IF m.nLineNo <= aFileInfo[m.i, 2]
 EXIT
 ENDIF

 DO CASE
 CASE aFileInfo[m.i, 3] == "Procedure"
 m.cProcName = aFileInfo[m.i, 1]
 IF AT('.', m.cProcName) > 0
 m.cProcName = SUBSTRC(m.cProcName, ;
 AT('.', m.cProcName) + 1)
 ENDIF
 CASE aFileInfo[m.i, 3] == "Class"
 m.cProcName = ''
 ENDCASE
 ENDFOR

 m.cSafety = SET("SAFETY")
 SET SAFETY OFF
 ERASE (m.cTempFilename)
 SET SAFETY &cSafety

 RETURN m.cProcName
ENDFUNC

Opening code windows
VFP’s EditSource() function lets you open pretty
much any kind of file that contains code in the
appropriate editor. The parameters to pass depend
on the file type, but always include the file name.
(Actually, there’s a way to use this function
without passing the file name, but it’s not relevant

to this discussion.) If you also pass a line number
within the file, the appropriate editor opens with
the cursor positioned on the specified line. Listing 3
shows the syntax.

Listing 3. The EditSource() function is your one-stop technique
for opening code windows.
nErrorCode = EditSource(cFileName [, nLineNo
 [, cClassName
 [, cMethodName]]])

The cClassName and cMethodName param-
eters apply only to visual classes and forms. As
you’d expect, when you include them, the specified
class opens to the specified method.

One of the cool things about this function is
that it works for almost every VFP file type you
want to open. Pass it an FRX and it opens the
Report Designer. Pass an MNX and it opens the
Menu Designer. Pass a DBC and it opens the code
editor for the stored procedures of that database.
(However, if you pass it a file type it doesn’t know
what to do with, such a project or table, it opens the
file as a text file.)

A number of VFP’s XBase and Thor tools use
EditSource() to open files. Listing 4 shows a meth-
od from Code References that uses EditSource() to
open the file the user is looking for.

Listing 4. This method from the Code References tool uses
EditSource() to open the right file.
FUNCTION GotoReference(cUniqueID)
 LOCAL nSelect
 LOCAL cFilename
 LOCAL cFileType
 LOCAL cClassName
 LOCAL cProcName

 IF VARTYPE(cUniqueID) <> 'C' OR ;
 EMPTY(cUniqueID)
 RETURN .F.
 ENDIF

 IF USED("FoxRefCursor") AND ;
 SEEK(cUniqueID, "FoxRefCursor", ;
 "UniqueID")
 nSelect = SELECT()

 cFilename = ;
 ADDBS(RTRIM(FoxRefCursor.Folder)) + ;
 RTRIM(FoxRefCursor.FileName)
 cClassName = RTRIM(FoxRefCursor.ClassName)
 cProcName = RTRIM(FoxRefCursor.ProcName)
 cFileType = UPPER(JUSTEXT(cFileName))

 DO CASE
 CASE cFileType == "SCX"
 EDITSOURCE(cFileName, ;
 MAX(FoxRefCursor.ProcLineNo, 1), ;
 cClassName, cProcName)

 CASE cFileType == "VCX"
 EDITSOURCE(cFileName, ;
 MAX(FoxRefCursor.ProcLineNo, 1), ;
 cClassName, cProcName)

 CASE cFileType == "DBF"
 * do a TRY/CATCH here
 IF USED(JUSTSTEM(cFilename))

November 2013 FoxRockX Page 3

 SELECT (JUSTSTEM(cFilename))
 ELSE
 SELECT 0
 USE (cFilename) EXCLUSIVE
 ENDIF
 MODIFY STRUCTURE

 OTHERWISE
 EDITSOURCE(cFileName, ;
 FoxRefCursor.LineNo)
 ENDCASE

 SELECT (nSelect)
 ENDIF

ENDFUNC

It’s also worth noting that VFP’s various
MODIFY commands can be used programmatically.
Just be sure to include the NOWAIT keyword if
you don’t want your code to stop and wait until
you close the editing window. The advantage of
EditSource() is that you don’t have to figure out
which editor to use.

A number of the Xbase tools use the various
MODIFY commands. For example, the code in
Listing 5 comes from the MemberData Editor. It’s
the Click method of the View XML button, which
displays the complete MemberData for the class or
form.

Listing 5. This code, in the Click method of the View XML
button of the MemberData Editor, saves the XML to a file, then
uses MODIFY FILE to display it, and then erases the file.
* Display the MemberData XML.

local lcXML, ;
 lcFile
with Thisform
 if .nScope = cnSCOPE_OBJECT
 lcXML = .GetMemberDataXML()
 else
 lcXML = .GetMemberDataForContainer(;
 .cSelectedParent, .T.)
 endif .nScope = cnSCOPE_OBJECT
 do case
 case empty(lcXML)
 messagebox(ccLOC_NO_MEMBERDATA, ;
 MB_OK + MB_ICONINFORMATION, ;
 .Caption)
 case not isnull(lcXML)
 lcFile = addbs(sys(2023)) + ;
 '_MemberData.XML'
 strtofile(lcXML, lcFile)
 modify file (lcFile) noedit
 erase (lcFile)
 endcase
endwith

Processing projects
As noted in my last article, VFP’s projects are just
tables with a special extension. So you can process
project data by opening the project with USE, and
treating it like a table.

However, projects offer another way to explore
them, as well as a unique tool that lets you respond
to actions on a project.

The Project and File objects
For each project open in the Project Manager, there
is a corresponding object based on the Project class.
The Project class includes a Files property, which
references a collection of File objects. (The Project
and File objects are COM classes, not native VFP
classes, which affects some of what you can with
them.) The _VFP object that references VFP’s engine
has a Projects property that references a collection
of open projects, and an ActiveProject property that
references the current project.

You can use these objects and properties to
access and modify projects. For example, the
code in Listing 6 comes from a method called
GoToDefFindClassInPath that’s part of the Thor Go
To Definition tool. It loops through the files in the
active project twice. The first time, it finds all class
libraries (VCX files) and checks each for a specified
class. If the class isn’t found in a VCX, the second
loop looks for program (PRG) files and checks each
of those for the specified class.

Listing 6. This code from the Thor Go To Definition tool looks
for a specified class in a project.
If Not llFound And ;
 Type ('_vfp.ActiveProject') = 'O'
 For Each loFile In _vfp.ActiveProject.Files
 If Not llFound And loFile.Type = 'V'
 This.GoToDefProcessVCXForClass(;
 loFile.Name, tcName, toInclude)
 If Not Empty (toInclude.File)
 llFound = .T.
 Exit
 Endif Not Empty (toInclude.File)
 Endif loFile.Type = 'P'
 Next loFile

 * Check all PRGs in the active project.

 For Each loFile In _vfp.ActiveProject.Files
 If Not llFound And loFile.Type = 'P'
 lcPRG = loFile.Name
 This.GoToDefProcessPRGForClass(lcPRG, ;
 tcName, toInclude, ;
 Upper (Filetostr (lcPRG)))
 If Not Empty (toInclude.File)
 llFound = .T.
 Exit
 Endif Not Empty (toInclude.File)
 Endif loFile.Type = 'P'
 Next loFile
Endif Not llFound ...

I’ve written a lot of utilities that work with the
Project and File objects. In fact, I created a class of
project utilities (originally published in the May,
2011 issue, and included in the downloads for this
article) to help me understand and clean up issues
in one project I inherited. For example, the method
in Listing 7 fills a cursor with a list of all files that
are referenced in the project but can’t be found.

Listing 7. This method from a class of tools for working with
projects puts a list of missing files into a cursor.
PROCEDURE ListMissingFiles(cAlias)
* Create a list of files in the project that
* are not found in the project folders.

Page 4 FoxRockX November 2013

LOCAL oFile, cFilewithPath

cAlias = This.GetValidAlias(m.cAlias, ;
 "csrMissingFiles")

CREATE CURSOR (m.cAlias) ;
 (iID I AUTOINC, mFileName M)

FOR EACH oFile IN This.oProject.Files
 cFileWithPath = oFile.Name
 IF NOT FILE(m.cFilewithPath)
 INSERT INTO (m.cAlias) (mFileName) ;
 VALUES (m.cFileWithPath)
 ENDIF
ENDFOR

RETURN m.cAlias

You’re not limited to just looking at the contents
of projects; you can modify them. Listing 8 shows
some of the code from another method in the same
class. The CopyProject method makes a copy of an
existing project in a new location, copying the files
that are actually referenced in the project. Note the
use of the Add method of the Files collection near
the end of the listing. (Additional code not shown
here copies the project’s icon, and checks forms and
classes for any graphics files that haven’t yet been
copied.)

Listing 8. This method (shown only in part) makes a copy of a
project in a specified folder, copying the files in the project.
PROCEDURE CopyProject(cNewRoot)
* Move a project and all the included files
* from the current folder to the specified
* root, maintaining the current folder
* structure.

LOCAL oFile, cNewName, cNewPath, cNewProject,
LOCAL oNewProject
LOCAL cMissing, cNoAdd, cFileExt, cNewExt

IF PCOUNT() < 1 OR EMPTY(m.cNewRoot)
 MESSAGEBOX("CopyProject: You must " + ;
 "specify the folder for the copy.")
 RETURN
ENDIF

* First, does the new folder exist
IF NOT DIRECTORY(m.cNewRoot)
 MD (m.cNewRoot)
ENDIF

* Create the new project.
This.ReportToUser("Creating new project")

cNewProject = FORCEPATH(;
 This.oProject.Name, m.cNewRoot)
CREATE PROJECT (m.cNewProject) NOWAIT
oNewProject = _VFP.ActiveProject

* Modified 22-April-2011 by TEG
* Need to set HomeDir explicitly
oNewProject.HomeDir = m.cNewRoot

* Modified 13-April-2011 by TEG
* Bring project properties along
WITH oNewProject
 .VersionComments = ;
 This.oProject.VersionComments
 .VersionCompany = ;

 This.oProject.VersionCompany
 .VersionCopyright = ;
 This.oProject.VersionCopyright
 .VersionDescription = ;
 This.oProject.VersionDescription
 .VersionLanguage = ;
 This.oProject.VersionLanguage
 .VersionNumber = This.oProject.VersionNumber
 .VersionProduct = :
 This.oProject.VersionProduct
 .VersionTrademarks = ;
 This.oProject.VersionTrademarks

 .Encrypted = This.oProject.Encrypted
ENDWITH

* Copy all files to appropriate directories
cMissing = ""
cNoAdd = ""
FOR EACH oFile IN This.oProject.Files
 This.ReportToUser("Handling file " + ;
 oFile.Name)

 IF NOT FILE(oFile.Name)
 * Original file is missing. Make a list
 * for user.
 cMissing = m.cMissing + ;
 CHR(13) + CHR(10) + oFile.Name
 LOOP
 ENDIF

 IF This.cHomeDir $ oFile.Name
 cNewName = m.cNewRoot + ;
 STREXTRACT(oFile.Name, ;
 This.cHomeDir,"",1,3)
 cNewFilePath = JUSTPATH(m.cNewName)
 IF NOT FILE(m.cNewName)
 IF NOT DIRECTORY(m.cNewFilePath)
 MD (m.cNewFilePath)
 ENDIF
 COPY FILE (oFile.Name) TO (m.cNewName)
 ENDIF

 * Copy associated memo file.
 cFileExt = JUSTEXT(m.cNewName)
 IF INLIST(UPPER(m.cFileExt), "SCX", ;
 "VCX", "MNX", "FRX", "LBX")
 cNewExt = LEFT(m.cFileExt,2) + "T"
 COPY FILE ;
 (FORCEEXT(oFile.Name, m.cNewExt)) TO ;
 (FORCEEXT(m.cNewName, m.cNewExt))
 ENDIF
 ELSE
 * If the original file is not in the
 * project folder hierarchy, don't copy it.
 * Just add the original to the new
 * project.
 cNewName = oFile.Name
 ENDIF

 * Now add it to the new project. Wrap in
 * TRY-CATCH in case it's already there.
 TRY
 oNewFile = ;
 oNewProject.Files.Add(m.cNewName)

 * Check whether it's the main file in the
 * old project, and, if so, make it the
 * main here.
 IF UPPER(oFile.Name) == ;
 UPPER(This.oProject.MainFile)
 oNewProject.SetMain(m.cNewName)
 ENDIF
 CATCH

November 2013 FoxRockX Page 5

 cNoAdd = m.cNoAdd + ;
 CHR(13) + CHR(10) + m.cNewName
 ENDTRY

ENDFOR

ProjectHooks
In addition to the ability to address projects and
their contents directly, VFP has a class called
ProjectHook that essentially provides you with
project events. You can attach a ProjectHook class
to any project. Once you’ve done so (and closed and
reopened the project), the projecthook’s events fire
when the corresponding actions take place on the
project. Many of the projecthook events correspond
directly to a method of the Project object. Table 2
shows the available events.

Table 2. ProjectHooks give a project a set of events that fire in
response to actions on the project.

Event Fires
Activate When the project gets

focus. That is, when the
instance of the Project
Manager for this project is
activated.

AfterBuild When a build is finished.
Receives a parameter
indicating whether an error
prevented the build from
completing. (0 indicates
success.)

BeforeBuild Before a build begins.
Allows you to make
changes before doing the
build. Receives the same
parameters as the project’s
Build method, and can
change them before they’re
passed on to Build.

Deactivate When the project loses
focus.

Destroy When the project is closed.
Error When an error occurs in the

projecthook’s code.
Init When the project is opened.
OLEDragDrop When an OLE drag-and-

drop operation ends by
dropping onto the Project
Manager.

OLEDragOver When an item in an OLE
drag-and-drop is dragged
over the Project Manager.

QueryAddFile When a file is added to the
project. Can prevent the file
from being added.

Event Fires
QueryModifyFile When a file is opened for

editing. Can prevent the file
from being opened.

QueryNewFile When a new file is being
created. Can prevent the
file from being created.

QueryRemoveFile When a file is removed from
the project. Can prevent the
file from being removed.

QueryRunFile When a file is executed.
Can prevent execution of
the file.

SCCDestroy Before the Destroy event
to provide an opportunity to
take source control actions.

SCCInit After the Init event to
provide an opportunity to
take source control actions.

A number of these events can prevent the corre-
sponding project action. Just include NODEFAULT
in their code. For example, putting NODEFAULT
in BeforeBuild prevents the project from being
built. NODEFAULT in any of the QueryXXXFile
events prevents the file action from taking place.

Oddly, projecthooks don’t automatically get a
reference to the project with which they’re associ-
ated, so it’s a best practice to add a property to the
projecthook for that purpose and set it in the Init
method, as in Listing 9.

Listing 9. Setting a custom property of a projecthook to the
associated project is a best practice. This code in Init handles
it.
* Assumes you’ve added a property called
* oProject to the class.
This.oProject = _VFP.ActiveProject

There are very few examples of projecthooks in
the code that comes with VFP or in VFPX. I sus-
pect that’s because what you want in a projecthook
depends a lot on the way you work. VFPX offers
ProjectHookX, a projecthook designed to make it
possible to attach multiple projecthooks to a single
project.

Rick Schummer uses projecthooks extensively.
His free WLC ProjectHook (available at
http://www.whitelightcomputing.com/
prodprojectbuilder.htm)
offers a wide variety of behaviors, including an
 alternative approach to mixing and matching dif-
ferent behaviors. The core class is phkDevelop-
ment, which is the one you actually attach to a
project. Listing 10 shows the code in its Activate
method, while Listing 11 shows the code in the cus-
tom ChangeToProjectDirectory method.

Page 6 FoxRockX November 2013

Listing 10. This code, in the Activate method of a projecthook,
switches to the project’s home directory whenever the project
becomes active. It also sets up a custom project toolbar.
* Change the directory to the project's home
* directory
this.ChangeToProjectDirectory()

DODEFAULT()

this.CreateProjectToolbar()

RETURN

Listing 11. The ChangeToProjectDirectory method of the WLC
projecthook class is called from the Activate method. It makes
the project’s home directory current, and then allows any exten-
sion objects hooked into the projecthook to run their code for
this method.
* Set the default directory to the project's
* home directory so the generic pathing works
* ie SET PATH TO data, forms, classes,
* graphics
IF TYPE("this.oProject") = "O" AND ;
 !ISNULL(this.oProject)
 IF !EMPTY(this.oProject.HomeDir)
 CD (this.oProject.HomeDir)
 ELSE
 this.DeveloperMessage(;
 "Project directory setting is empty...", ;
 .T.)
 ENDIF
ELSE
 * This should never happen, unless you
 * manually CREATEOBJECT() the class without
 * a project.
 THIS.DeveloperMessage(;
 "Project reference not available", .T.)
ENDIF

* Hook into additional code provided in
* extension object(s).
FOR lnIndex = 1 TO this.nHooks
 IF NOT ISNULL(this.aHook[lnIndex, 1])
 llHookMethod = ;
 PEMSTATUS(this.aHook[lnIndex, 1], ;
 "ChangeToProjectDirectory", 5)

 IF llHookMethod
 this.aHook[lnIndex, ;
 1].ChangeToProjectDirectory()
 ENDIF
 ENDIF
ENDFOR

RETURN

Summing up
VFP provides a rich set of language elements for
building developer tools. Using just native lan-
guage elements, you can explore data, forms, class-
es, programs, menus, reports, labels and projects.
In addition, VFP comes with the source code for
a number of the included developer tools, which
gives you a rich set of examples to explore when
you’re designing a new tool.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of nearly a dozen books
including the award winning Hacker’s Guide to Visual
FoxPro, Microsoft Office Automation with Visual FoxPro
and Taming Visual FoxPro’s SQL. Her latest collaboration
is VFPX: Open Source Treasure for the VFP Developer,
available at www.foxrockx.com. Her other books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

